Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 970
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Anal Chem ; 96(33): 13522-13532, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39110633

RESUMO

Wearable sweat sensors are reshaping healthcare monitoring, providing real-time data on hydration and electrolyte levels with user-friendly, noninvasive devices. This paper introduces a highly portable two-channel microfluidic device for simultaneous sweat sampling and the real-time detection of volatile organic compound (VOC) biomarkers. This innovative wearable microfluidic system is tailored for monitoring diabetes through the continuous and noninvasive tracking of acetone and ammonia VOCs, and it seamlessly integrates with smartphones for easy data management. The core of this system lies in the utilization of carbon polymer dots (CPDs) and carbon dots (CDs) derived from monomers such as catechol, resorcinol, o-phenylenediamine, urea, and citric acid. These dots are seamlessly integrated into hydrogels made from gelatin and poly(vinyl alcohol), resulting in an advanced solid-state fluorometric sensor coating on a cellulose paper substrate. These sensors exhibit exceptional performance, offering linear detection ranges of 0.05-0.15 ppm for acetone and 0.25-0.37 ppm for ammonia, with notably low detection limits of 0.01 and 0.08 ppm, respectively. Rigorous optimization of operational parameters, encompassing the temperature, sample volume, and assay time, has been undertaken to maximize device performance. Furthermore, these sensors demonstrate impressive selectivity, effectively discerning between biologically similar substances and other potential compounds commonly present in sweat. As this field matures, the prospect of cost-effective, continuous, personalized health monitoring through wearable VOC sensors holds significant potential for overcoming barriers to comprehensive medical care in underserved regions. This highlights the transformative capacity of wearable VOC sweat sensing in ensuring equitable access to advanced healthcare diagnostics, particularly in remote or geographically isolated areas.


Assuntos
Diabetes Mellitus , Suor , Compostos Orgânicos Voláteis , Dispositivos Eletrônicos Vestíveis , Humanos , Compostos Orgânicos Voláteis/análise , Suor/química , Diabetes Mellitus/diagnóstico , Acetona/análise , Pontos Quânticos/química , Carbono/química , Amônia/análise , Polímeros/química
2.
Metabolomics ; 20(2): 38, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38460055

RESUMO

INTRODUCTION: Changes in the categories and concentrations of salivary metabolites may be closely related to oral, intestinal or systemic diseases. To study salivary metabolites, the first analytical step is to extract them from saliva samples as much as possible, while reducing interferences to a minimum. Frequently used extraction methods are protein precipitation (PPT), liquid-liquid extraction (LLE) and solid-phase extraction (SPE), with various organic solvents. The types and quantities of metabolites extracted with different methods may vary greatly, but few studies have systematically evaluated them. OBJECTIVES: This study aimed to select the most suitable methods and solvents for the extraction of saliva according to different analytical targets. METHODS: An untargeted metabolomics approach based on liquid chromatography-mass spectrometry was applied to obtain the raw data. The numbers of metabolites, repeatability of the data and intensities of mass spectrometry signals were used as evaluation criteria. RESULTS: PPT resulted in the highest coverage. Among the PPT solvents, acetonitrile displayed the best repeatability and the highest coverage, while acetone resulted in the best signal intensities for the extracted compounds. LLE with the mixture of chloroform and methanol was the most suitable for the extraction of small hydrophobic compounds. CONCLUSION: PPT with acetonitrile or acetone was recommended for untargeted analysis, while LLE with the mixture of chloroform and methanol was recommended for small hydrophobic compounds.


Assuntos
Metabolômica , Metanol , Solventes/química , Metabolômica/métodos , Metanol/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Clorofórmio , Acetona , Saliva , Acetonitrilas
3.
Exp Parasitol ; 249: 108516, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36967034

RESUMO

The solvating power of test media used in anthelmintic assays is critical to the validity of assay results, especially when evaluating plant extracts. High solutes in media lowers its solvating power, altering the range of concentrations available for investigation and assay performance. To identify simplified, well-tolerated media for adult Haemonchus placei with improved solvating power, we investigated the impact of varying solutions of pH (2.5-8.5), salinity (19-154 mM), and normal saline (NS) incorporating dissolution enhancers (acetone, propylene glycol, DMSO and Tween-80; 10-40% v/v) on the nematode over 3 h at room temperature. The performance of identified media, NS and 20% Tween-80 in NS, were evaluated by preparing sample extracts (acetone extract Sarcocephalus latifolius, AESL20&10; and chloroform extract Vernonia amygdalina, CEVA20&10) stock solutions (20 and 10 mg/mL) in them, assessed their apparent dissolution, and each highest stock solution that dissolves the extracts evaluated for anthelmintic activity against H. placei. We found isotonicity to be the critical-to-worm survival factor as H. placei survived 100% in pH solutions 3.5-8.5, and saline solutions 39-154 mM. The dissolution enhancers, at 40%, gave no survival. At 30% and 20%, only Tween-80 gave 92.5% and 100% survival, respectively. At 10%, Tween-80, acetone, DMSO and propylene glycol gave 100%, 100%, 87.5% and 0% survival, respectively. In 20% Tween-80 in NS, AESL20&10 and CEVA20&10 dissolved, furnishing wider concentration range (20-0 mg/mL); whereas only AESL10 dissolved in NS (narrower concentration range, 10-0 mg/mL). The LC50s (mg/mL) of 7.67 (AESL10, NS) and 7.48 (AESL20, Tween-80 in NS) were not significantly different (p > 0.05), while CEVA20 (Tween-80 in NS) gave 2.67. Our findings show that NS and 20% Tween-80 in NS, as isotonic, aqueous-based media, are suitable, and well-tolerated as test media for adult H. placei in a short-term motility assay. Up to 30% Tween-80 could be used to enhance dissolution where necessary.


Assuntos
Anti-Helmínticos , Anti-Infecciosos , Haemonchus , Animais , Acetona , Dimetil Sulfóxido , Polissorbatos/farmacologia , Extratos Vegetais/farmacologia , Propilenoglicóis
4.
Mikrochim Acta ; 190(8): 283, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415040

RESUMO

Transition metal dichalcogenides (TMDs) are promising materials for chemiresistive gas sensor, while TMD alloys (two chalcogenide or/and metal elements) with tunable electronic structures have drawn little attention in gas sensing. Herein, Mo0.5W0.5S2 alloy nanoparticles (NPs) were prepared by a facile sonication exfoliation method and then tested for ammonia sensing. The crystal structure, geometric morphology, and elemental composition of Mo0.5W0.5S2 NPs were investigated. The gas sensing measurements demonstrated Mo0.5W0.5S2 NPs with good response to ammonia at 80 °C with a limit of detection down to 500 part per billion (ppb). The sensor also displayed good stability as well as superb selectivity to ammonia in the presence of interferences, such as methanol, acetone, benzene, and cyclohexane. The theoretical calculations revealed Mo and W atoms at edges (such as Mo0.5W0.5S2 (010)) of sheet-like NPs as the active sites for ammonia adsorption. Electrons donated by the adsorbed ammonia were combined with holes in p-type Mo0.5W0.5S2 NPs, and the concentration of the main charge carrier was reduced, resulting in resistance enhancement.


Assuntos
Ligas , Nanopartículas , Amônia , Limite de Detecção , Acetona
5.
Bioprocess Biosyst Eng ; 46(12): 1837-1845, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924351

RESUMO

Severe butanol toxicity to the metabolism of solventogenic clostridia significantly impede the application of fermentative butanol as a biofuel. Liquid-liquid extraction is an efficient method to reduce the butanol toxicity by in-situ removing it in the extractant phase. Butanol mass transfer into extractant phase in static acetone-butanol-ethanol (ABE) extractive fermentation with biodiesel as the extractant could be enhanced by adding a tiny amount of surfactant such as tween-80. In the case of corn-based ABE extractive fermentation by Clostridium acetobutylicum ATCC 824 using biodiesel originated from waste cooking oil as extractant, addition of 0.14% (w/v) tween-80 could increase butanol production in biodiesel and total solvents production by 21% and 17%, respectively, compared to those of control under non-surfactant existence. Furthermore, a mathematical model was developed to elucidate the mechanism of enhanced ABE extractive fermentation performance. The results indicated that the mass transfer improvement was obtained by effectively altering the physical properties of the self-generated bubbles during ABE extractive fermentation, such as reducing bubble size and extending its retention time in extractant phase, etc. Overall, this study provided an efficient approach for enhancing biobutanol production by integration of bioprocess optimization and model interpretation.


Assuntos
Butanóis , Clostridium acetobutylicum , Butanóis/metabolismo , Acetona/metabolismo , Fermentação , Tensoativos/metabolismo , Polissorbatos/metabolismo , Biocombustíveis , Etanol/metabolismo , 1-Butanol/metabolismo
6.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239860

RESUMO

A new Zn(II)-based coordination polymer (1) comprising the Schiff base ligand obtained by the condensation of 5-aminosalicylic acid and salicylaldehyde has been synthesized. This newly synthesized compound has been characterized by analytical and spectroscopic methods, and finally, by single-crystal X-ray diffraction technique in this study. The X-ray analysis reveals a distorted tetrahedral environment around the central Zn(II) center. This compound has been used as a sensitive and selective fluorescent sensor for acetone and Ag+ cations. The photoluminescence measurements indicate that in the presence of acetone, the emission intensity of 1 displays quenching at room temperature. However, other organic solvents caused meagre changes in the emission intensity of 1. Additionally, the fluorescence intensity of 1 has been examined in the presence of different ketones viz. cyclohexanone, 4-heptanone, and 5-nonanone, to assess the interaction between the C=O group of the ketones and the molecular framework of 1. Moreover, 1 displays a selective recognition of Ag+ in the aqueous medium by an enhancement in its fluorescence intensity, representing its high sensitivity for the detection of Ag+ ions in a water sample. Additionally, 1 displays the selective adsorption of cationic dyes (methylene blue and rhodamine B). Hence, 1 showcases its potential as an excellent luminescent probe to detect acetone, other ketones, and Ag+ with an exceptional selectivity, and displaying a selective adsorption of cationic dye molecules.


Assuntos
Acetona , Polímeros , Corantes Fluorescentes/química , Cátions , Zinco/química
7.
J Environ Manage ; 345: 118549, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37421717

RESUMO

Electronic waste (e-waste) usage has increased tremendously with the rapid evolution of technologies. The accumulated e-waste has now emerged as one of the crucial concerns regarding environmental pollution and human health. Recycling e-waste is commonly focused on metal recovery; nevertheless, a significant fraction of plastics (20-30%) are in e-waste. There is an indispensable need to focus on e-waste plastic recycling in an effective way, which has been mostly overlooked to date. An environmentally safe and efficient study is conducted using subcritical to supercritical acetone (SCA) to degrade the real waste computer casing plastics (WCCP) in the central composite design (CCD) of response surface methodology (RSM) to achieve the maximum oil yield of the product. The experiment parameters were varied in the temperature span of 150-300 °C, residence time between 30 and 120 min, solid/liquid ratio between 0.02 and 0.05 (g/ml), and NaOH amount from 0 to 0.5 g. Adding NaOH into the acetone helps to achieve efficient degradation and debromination efficiency. The study emphasized the attributes of oils and solid products recovered from the SCA-treated WCCP. The characterization of feed and formed products is performed with different characterization techniques such as TGA, CHNS, ICP-MS, FTIR, GC-MS, Bomb calorimeter, XRF, and FESEM. The highest oil yield achieved is 87.89% from the SCA process at 300 °C, in 120min, 0.05 S/L ratio, and 0.5 g of NaOH. GC-MS results disclose that the liquid product (oil) comprises single- and duplicate-ringed aromatic and oxygen-containing compounds. Isophorone is the significant component of the liquid product obtained. Furthermore, SCA's possible polymer degradation mechanistic route, bromine distribution, economic feasibility, and environmental aspect were also explored. This present work represents an environmentally friendly and promising approach for recycling the plastic fraction of e-waste and recovering valuable chemicals from WCCP.


Assuntos
Acetona , Resíduo Eletrônico , Humanos , Plásticos/química , Hidróxido de Sódio , Resíduo Eletrônico/análise , Óleos , Computadores , Reciclagem
8.
Molecules ; 28(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37513195

RESUMO

Usnic acid (UA) is a compound with multiple biological activities that make it useful in various industries, e.g., pharmaceutical, cosmetic, dentistry, and agricultural sectors. Lichens are the primary source of UA, which is primarily extracted using acetone. This study aimed to investigate the solubility of UA in numerous natural deep eutectic solvents (NADESs) and use a mixture of thymol and camphor as a NADES in the optimization of the UA extraction process with the design of experiments method. For numerical optimization, the following parameters were employed in the experiment to confirm the model: a camphor-to-thymol ratio of 0.3, a liquid-to-solid ratio of 60, and a time of 30 min. The obtained experimental results aligned well with the predicted values, with the mean experimental value falling within the confidence interval, exhibiting deviations between 11.93 and 14.96. By employing this model, we were able to optimize the extraction procedure, facilitating the isolation of approximately 91% of the total UA content through a single extraction, whereas a single acetone extraction yielded only 78.4% of UA.


Assuntos
Solventes Eutéticos Profundos , Timol , Solventes , Acetona , Cânfora , Extratos Vegetais
9.
Molecules ; 28(11)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37299010

RESUMO

Volatile organic compounds (VOCs) are byproducts from metabolic pathways that can be detected in exhaled breath and have been reported as biomarkers for different diseases. The gold standard for analysis is gas chromatography-mass spectrometry (GC-MS), which can be coupled with various sampling methods. The current study aims to develop and compare different methods for sampling and preconcentrating VOCs using solid-phase microextraction (SPME). An in-house sampling method, direct-breath SPME (DB-SPME), was developed to directly extract VOCs from breath using a SPME fiber. The method was optimized by exploring different SPME types, the overall exhalation volume, and breath fractionation. DB-SPME was quantitatively compared to two alternative methods involving the collection of breath in a Tedlar bag. In one method, VOCs were directly extracted from the Tedlar bag (Tedlar-SPME) and in the other, the VOCs were cryothermally transferred from the Tedlar bag to a headspace vial (cryotransfer). The methods were verified and quantitatively compared using breath samples (n = 15 for each method respectively) analyzed by GC-MS quadrupole time-of-flight (QTOF) for compounds including but not limited to acetone, isoprene, toluene, limonene, and pinene. The cryotransfer method was the most sensitive, demonstrating the strongest signal for the majority of the VOCs detected in the exhaled breath samples. However, VOCs with low molecular weights, including acetone and isoprene, were detected with the highest sensitivity using the Tedlar-SPME. On the other hand, the DB-SPME was less sensitive, although it was rapid and had the lowest background GC-MS signal. Overall, the three breath-sampling methods can detect a wide variety of VOCs in breath. The cryotransfer method may be optimal when collecting a large number of samples using Tedlar bags, as it allows the long-term storage of VOCs at low temperatures (-80 °C), while Tedlar-SPME may be more effective when targeting relatively small VOCs. The DB-SPME method may be the most efficient when more immediate analyses and results are required.


Assuntos
Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Acetona/análise , Microextração em Fase Sólida , Polietilenotereftalatos/análise , Testes Respiratórios/métodos , Biópsia
10.
J Contemp Dent Pract ; 24(12): 940-943, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38317390

RESUMO

AIM: The purpose of the present study was to evaluate the impact of various chemical solvents on bond strength of orthodontic brackets. MATERIALS AND METHODS: One hundred healthy human premolars with undamaged buccal surfaces that were extracted for orthodontic purposes were gathered. Using 37% orthophosphoric acid, primer, and Transbond XT adhesive, ceramic 0.018" × 0.022" slot orthodontic brackets were adhered to the tooth surface. Following thermocycling, all samples were divided into four groups, with 25 samples in each group: group I: control; group II: application of ethanol; group III: application of acetone; and group IV: application of dimethyl sulfoxide (DMSO). Following the debonding tests, a double-ocular stereomicroscope was used to inspect the tooth surfaces. Additionally, adhesive remnant index (ARI) values were evaluated at 40× magnification. Data were recorded and statistically analyzed. RESULTS: The bond strength was lesser in acetone applied group (16.18 ± 3.64) followed by DMSO applied group (22.08 ± 2.86), ethanol applied group (24.36 ± 4.02), and control group (27.14 ± 3.68). There was a highly significant difference found between the chemical solvents group. The ARI score 3 was present in control (12%), ethanol (8%), and DMSO (4%), and it was absent in acetone applied group. The ARI score 0 was more in acetone applied group (24%). CONCLUSION: The present study concluded that the reduced debonding force was found with the application of acetone solvent followed by DMSO, ethanol, and control groups. Applying acetone can be a substitute technique to help with ceramic bracket debonding. CLINICAL SIGNIFICANCE: Orthodontic bracket debonding cannot occur without shear bond strength (SBS). The need for an ideal debonding technique for ceramic brackets without negative consequences arises from the risk of enamel damage that frequently follows the process. Acetone treatment prior to ceramic bracket debonding could be an alternate clinical technique to preventing enamel damage and facilitating debonding. How to cite this article: Bhushan R, Singh S, Sam G, et al. Effect of Different Chemical Solvents on Bond Strength of Orthodontic Brackets: An In Vitro Study. J Contemp Dent Pract 2023;24(12):940-943.


Assuntos
Colagem Dentária , Braquetes Ortodônticos , Humanos , Cimentos Dentários , Solventes , Acetona , Dimetil Sulfóxido , Etanol , Resistência ao Cisalhamento , Teste de Materiais , Colagem Dentária/métodos
11.
Sud Med Ekspert ; 66(3): 46-51, 2023.
Artigo em Russo | MEDLINE | ID: mdl-37192459

RESUMO

The aim of this study is to research the stability of 2.6-di(propan-2-yl)phenol in biomaterial. GC-MS (column DB-5MS EVIDEX (25 m×0.2 mm); stationary liquid phase of 5%-phenyl-95% dimethylpolysiloxane), TLC (Sorbfil plates, mobile phase of hexane-diethyl ether (9:1) and spectrophotometry (solvent medium - 95% ethanol) were used as methods of analysis. 2.6-di(propan-2-yl)phenol was isolated from the biomatrix (liver tissue) by infusion with a mixture of ethyl acetate-acetone (7:3). The analyte was purified by combining extraction (water-ethyl acetate system) and semi-preparative chromatography on a column of silica gel L 40/100 µm, eluent - hexane-acetone (7:3). It was found that at -22 °C, 0 °C, 12 °C, 20 °C and 30 °C 2.6-di(propan-2-yl)phenol can be present in the liver tissue for 119, 98, 70, 56 and 42 days, respectively. The possibility of mathematical description of analyte decomposition dynamics in biomaterial (liver tissue) at the considered temperatures on the basis of hyperbola equation has been studied. The experimentally calculated coefficients in the hyperbola equation (km) for temperatures -22 °C, 0 °C, 12 °C, 20 °C and 30 °C are equal to 1823, 1130, 697, 510, and 255, respectively. The dependence km on the conserving temperature (tо) was educed. The equation for the description of dependence is offered: km=30.61∙(50-to)-402.39. It is shown that this equation can be the basis for prediction of 2.6-di(propan-2-yl)phenol stability in biomaterial (liver tissue) in the temperature range from -22 °C to 30 °C.


Assuntos
Hexanos , Fenol , Fenol/análise , Acetona , Materiais Biocompatíveis , Fenóis/análise
12.
Small ; 18(42): e2203715, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36058648

RESUMO

Limited by the insufficient active sites and the interference from breath humidity, designing reliable gas sensing materials with high activity and moisture resistance remains a challenge to analyze human exhaled breath for the translational application of medical diagnostics. Herein, the dual sensing and cooperative diagnosis is achieved by utilizing metal-organic frameworks (MOFs) and its derivative. The Fe-MIL-101-NH2 serves as the quartz crystal microbalance humidity sensing layer, which exhibits high selectivity and rapid response time (16 s/15 s) to water vapor. Then, the Co2+ and Ni2+ cations are further co-doped into Fe-MIL-101-NH2 host to obtain the derived Co/Ni/Fe trimetallic  oxides (CoNiFe-MOS-n). The chemiresistive CoNiFe-MOS-n sensor displays the high sensitivity (560) and good selectivity to acetone, together with a lower original resistance compared with Fe2 O3 and NiFe2 O4 . Moreover, as a proof-of-concept application, synergistic integration of Fe-MIL-101-NH2 and derived CoNiFe-MOS-n is carried out. The Fe-MIL-101-NH2 is applied as moisture sorbent materials, which realize a sensitivity compensation of CoNiFe-MOS-n sensors for the detection of acetone (biomarker gas of diabetes). The findings provide an insight for effective utilization of MOFs and the derived materials to achieve a trace gas detection in exhaled breath analysis.


Assuntos
Estruturas Metalorgânicas , Materiais Inteligentes , Humanos , Estruturas Metalorgânicas/química , Óxidos , Acetona/química , Vapor , Cátions , Biomarcadores
13.
Appl Environ Microbiol ; 88(7): e0241921, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35311509

RESUMO

Butyrate is produced by chemical synthesis based on crude oil, produced by microbial fermentation, or extracted from animal fats (M. Dwidar, J.-Y. Park, R. J. Mitchell, and B.-I. Sang, The Scientific World Journal, 2012:471417, 2012, https://doi.org/10.1100/2012/471417). Butyrate production by anaerobic bacteria is highly favorable since waste or sustainable resources can be used as the substrates. For this purpose, the native hyper-butanol producer Clostridium saccharoperbutylacetonicum N1-4(HMT) was used as a chassis strain due to its broad substrate spectrum. BLASTp analysis of the predicted proteome of C. saccharoperbutylacetonicum N1-4(HMT) resulted in the identification of gene products potentially involved in acetone-butanol-ethanol (ABE) fermentation. Their participation in ABE fermentation was either confirmed or disproven by the parallel production of acids or solvents and the respective transcript levels obtained by transcriptome analysis of this strain. The genes encoding phosphotransacetylase (pta) and butyraldehyde dehydrogenase (bld) were deleted to reduce acetate and alcohol formation. The genes located in the butyryl-CoA synthesis (bcs) operon encoding crotonase, butyryl-CoA dehydrogenase with electron-transferring protein subunits α and ß, and 3-hydroxybutyryl-CoA dehydrogenase were overexpressed to channel the flux further towards butyrate formation. Thereby, the native hyper-butanol producer C. saccharoperbutylacetonicum N1-4(HMT) was converted into the hyper-butyrate producer C. saccharoperbutylacetonicum ΔbldΔpta [pMTL83151_BCS_PbgaL]. The transcription pattern following deletion and overexpression was characterized by a second transcriptomic study, revealing partial compensation for the deletion. Furthermore, this strain was characterized in pH-controlled fermentations with either glucose or Excello, a substrate yielded from spruce biomass. Butyrate was the main product, with maximum butyrate concentrations of 11.7 g·L-1 and 14.3 g·L-1, respectively. Minimal amounts of by-products were detected. IMPORTANCE Platform chemicals such as butyrate are usually produced chemically from crude oil, resulting in the carry-over of harmful compounds. The selective production of butyrate using sustainable resources or waste without harmful by-products can be achieved by bacteria such as clostridia. The hyper-butanol producer Clostridium saccharoperbutylacetonicum N1-4(HMT) was converted into a hyper-butyrate producer. Butyrate production with very small amounts of by-products was established with glucose and the sustainable lignocellulosic sugar substrate Excello extracted from spruce biomass by the biorefinery Borregaard (Sarpsborg, Norway).


Assuntos
Butiratos , Petróleo , 1-Butanol/metabolismo , Acetona/metabolismo , Butanóis/metabolismo , Butiratos/metabolismo , Clostridium/genética , Clostridium/metabolismo , Etanol/metabolismo , Fermentação , Glucose/metabolismo , Lignina , Petróleo/metabolismo , Açúcares/metabolismo
14.
Opt Express ; 30(16): 29665-29679, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36299136

RESUMO

The detection of acetone in the gaseous form in exhaled breath using an integrated sensor can provide an effective tool for disease diagnostics as acetone is a marker for monitoring human metabolism. An on-chip acetone gas sensor based on the principle of Mach-Zehnder interferometer is proposed and demonstrated. The sensing arm of the device is activated with a composite film of polyethyleneimine and amido-graphene oxide as the gas-sensitive adsorption layer. The composite film demonstrates good selectivity to acetone gas, can be used repeatedly, and is stable in long-term use. Room temperature operation has been demonstrated for the sensor with high sensitivity under a 20 ppm acetone environment. The detection limit can reach 0.76 ppm, making it feasible to be used for the clinical diagnosis of diabetes and the prognosis of heart failure.


Assuntos
Acetona , Técnicas Biossensoriais , Humanos , Limite de Detecção , Polietilenoimina , Gases
15.
Langmuir ; 38(38): 11650-11657, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36103620

RESUMO

The DNA origami technique allows the precise synthesis of complex, biocompatible nanomaterials containing small molecules, biomolecules, and inorganic nanoparticles. The negatively charged phosphates in the backbone make DNA highly water-soluble and require salts to shield its electrostatic repulsion. DNA origamis are therefore not soluble in most organic solvents. While this is not problematic for applications in biochemistry, biophysics, or nanomedicine, other potential applications, processes, and substrates are incompatible with saline solutions, which include the synthesis of many nanomaterials, and reactions in templated synthesis, the operation of nanoelectronic devices, or semiconductor fabrication. To overcome this limitation, we coated DNA origami with amphiphilic poly(ethylene glycol) polylysine block copolymers and transferred them into various organic solvents including chloroform, dichloromethane, acetone, or 1-propanol. Our approach maintains the shape of the nanostructures and protects functional elements bound to the structure, such as fluorophores, gold nanoparticles, or proteins. The DNA origami polyplex micellization (DOPM) strategy hence enables solubilization or a phase transfer of complex structures into various organic solvents, which significantly expands the use of DNA origami for a range of potential applications and technical processes.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , 1-Propanol , Acetona , Clorofórmio , DNA/química , Ouro , Cloreto de Metileno , Nanoestruturas/química , Fosfatos , Polietilenoglicóis/química , Polilisina , Polímeros/química , Sais , Solubilidade , Solventes , Água/química
16.
Biomacromolecules ; 23(3): 708-719, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-34968020

RESUMO

The limited utilization of reliable tools and standards for determination of the softwood kraft lignin molar mass and the corresponding molecular conformation hampers elucidation of the structure-property relationships of lignin. At issue, conventional size exclusion chromatography (SEC) is unable to robustly measure the molar mass because of a lack of calibration standards with a similar structure to lignin. In the present work, the determination of the absolute molar mass of acetylated technical lignin was revisited utilizing SEC combined with multi-angle light scattering with a band pass filter to suppress the fluorescence. Fractionated lignin isolated using sequential techniques of solvent and membrane methods was used to enhance the clarity of light-scattering profiles by narrowing the molar mass distribution of lignin fractions. Further information on the molecular conformation of derivatized samples was studied utilizing a differential viscometer, and chemical structures were identified by NMR spectroscopy analysis. Through the help of fractionation, intrinsic viscosity values were determined for the different fractions as a function of molecular weight cut-off membranes. The derivatized acetone-soluble lignin was found to possess a lower molecular weight and an extremely compact structure relative to the derivatized acetone-insoluble fraction based on a significantly lower "α" value in the Mark-Houwink-Sakurada plot (0.15 acetone-soluble vs 0.33 acetone-insoluble). The differences in geometry were supported by the linkage analysis from NMR showing the acetone-soluble part containing fewer native linkages. In both of these examples, kraft lignin behaved like a solid sphere, limiting the ability to provide entanglements between molecular chains. From this standpoint, macroscopic properties of lignin are justified with this knowledge of a dense and extremely compact structure.


Assuntos
Acetona , Lignina , Acetona/química , Lignina/química , Conformação Molecular , Peso Molecular
17.
Anal Bioanal Chem ; 414(26): 7647-7658, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36018334

RESUMO

Exhaled volatile organic compounds (VOCs) have been widely applied for the study of disease biomarkers. Oral exhalation and nasal exhalation are two of the most common sampling methods. However, VOCs released from food residues and bacteria in the mouth or upper respiratory tract were also sampled and usually mistaken as that produced from body metabolism. In this study, exhalation from deep airway was first directly collected through intubation sampling and analyzed. The exhalation samples of 35 subjects were collected through a catheter, which was inserted into the trachea or bronchus through the mouth and upper respiratory tract. Then, the VOCs in these samples were detected by proton transfer reaction mass spectrometry (PTR-MS). In addition, fast gas chromatography proton transfer reaction mass spectrometry (FGC-PTR-MS) was used to further determine the VOCs with the same mass-to-charge ratios. The results showed that there was methanol, acetonitrile, ethanol, methyl mercaptan, acetone, isoprene, and phenol in the deep airway. Compared with that in oral exhalation, ethanol, methyl mercaptan, and phenol had lower concentrations. In detail, the median concentrations of ethanol, methyl mercaptan, and phenol were 7.3, 0.6, and 23.9 ppbv, while those in the oral exhalation were 80.0, 5.1, and 71.3 ppbv, respectively, which meant the three VOCs mainly originated from the food residues and bacteria in the mouth or upper respiratory tract, rather than body metabolism. The research results in our study can provide references for expiratory VOC research based on oral and nasal exhalation samplings, which are more feasible in clinical practice.


Assuntos
Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Testes Respiratórios/métodos , Acetona , Prótons , Metanol/análise , Expiração , Pulmão/química , Biomarcadores/análise , Etanol/análise , Acetonitrilas , Compostos de Sulfidrila/análise , Fenóis/análise , Intubação Intratraqueal
18.
Macromol Rapid Commun ; 43(9): e2200063, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35257431

RESUMO

A natural polysaccharide-based smart photo-actuator is fabricated via electrospinning of cellulose 4-phenyl azobenzoate (Azo-Cel) from its organic solution in a mixture of high-volatile acetone, a poor solvent of Azo-Cel, and low-volatile N,N-dimethylacetamide (DMAc), a good solvent of Azo-Cel. At an optimal polymer concentration (17 wt%) and solvent mixing ratio (acetone/DMAc = 3/2 (v/v)), stable electrified polymer jets are formed and continuous nanofibers and their nonwoven fabric can be drawn on a cylinder-shaped rotating drum electrode under a high electric field (25 kV). Scanning electron microscopic observation of the Azo-Cel fabric confirms that the fabric consists of uniaxially aligned nanofibers with a mean diameter of 207 nm. The water contact angle of the Azo-Cel fabric reversibly decreases and increases in response to alternate irradiation with UV and visible light to induce geometric deformation of the azobenzene moiety between the trans and cis isomers, which lead to lower and higher surface free energies, respectively. In addition, self-standing Azo-Cel fabric exhibits a UV-driven photo-mechanical asymmetric bending deformation toward the light source.


Assuntos
Celulose , Nanofibras , Acetona , Polímeros , Solventes
19.
Phys Chem Chem Phys ; 24(17): 10069-10078, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35416222

RESUMO

Pulsed field gradient (PFG) NMR in combination with quasielastic neutron scattering (QENS) was used to investigate self-diffusion of water and acetone in Nafion membranes with and without immobilized vanillic acid (VA). Complementary characterization of these membranes was performed by small angle X-ray scattering (SAXS) and NMR relaxometry. This study was motivated by the recent data showing that an organic acid, such as VA, in Nafion can preserve its catalytic activity in the presence of water even at high intra-polymer water concentrations corresponding up to 100% ambient relative humidity. However, there is currently no clear understanding of how immobilized organic acid molecules influence the microscopic transport properties and related structural properties of Nafion. Microscopic diffusion data measured by PFG NMR and QENS are compared for Nafion with and without VA. For displacements smaller than the micrometer-sized domains previously reported for Nafion, the VA addition was not observed to lead to any significant changes in the water and/or acetone self-diffusivity measured by each technique inside Nafion. However, the reported PFG NMR data present evidence of a different influence of acetone concentration in the membranes with and without VA on the water permeance of the interfaces between neighboring micrometer-sized domains. The reported diffusion data are correlated with the results of SAXS structural characterization and NMR relaxation data for water and acetone.


Assuntos
Acetona , Ácido Vanílico , Polímeros de Fluorcarboneto , Espalhamento a Baixo Ângulo , Água/química , Difração de Raios X
20.
Int J Mol Sci ; 23(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35806473

RESUMO

Cosmetic ingredients originating from natural resources have garnered considerable attention, and the demand for whitening ingredients is increasing, particularly in Asian countries. Lignin is a natural phenolic biopolymer significantly effective as a natural sunscreen, as its ultraviolet protection efficacy ranges from 250 to 400 nm. However, using different types of lignin as cosmetic ingredients is difficult owing to the heterogeneity of lignin and the lack of in vitro and in vivo safety and efficacy data. Thus, steam-exploded lignin (SEL) was prepared from bamboo, fractionated via successive organic solvent extraction, and sequentially fractionated using ethyl acetate, methanol, and acetone to investigate its potential as a natural whitening material. Gel permeation chromatography showed that the molecular weight of acetone-soluble and acetone-insoluble SEL fractions were the lowest and the highest, respectively. Monomer structures of the four lignin fractions were elucidated using 1H, 13C, and 2D heteronuclear single quantum coherence nuclear magnetic resonance and pyrolysis gas chromatography/mass spectrometry. The antioxidant and tyrosinase inhibition activities of the four fractions were compared. The methanol-soluble SEL fraction (SEL-F2) showed the highest antioxidant activity (except 2,2-diphenyl-1-picrylhydrazyl scavenging activity), and the enzyme inhibition kinetics were confirmed. In this study, the expression pattern of the anti-melanogenic-related proteins by SEL-F2 was confirmed for the first time via the protein kinase A (PKA)/cAMP-response element-binding (CREB) protein signaling pathway in B16F10 melanoma cells. Thus, SEL may serve as a valuable cosmetic whitening ingredient.


Assuntos
Lignina , Monofenol Mono-Oxigenase , Acetona , Antioxidantes/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Lignina/química , Lignina/farmacologia , Melaninas/metabolismo , Metanol/farmacologia , Monofenol Mono-Oxigenase/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA